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Smaller and Smaller 

Dec. 23, 1947. John Bardeen 
and Walter Brattain show the 
first working transistor. 

Sep. 1958. Jack Kilby builds  
the first integrated circuit. 

Observation Observation Observation Observation of of of of 
molecular orbital molecular orbital molecular orbital molecular orbital 

gatinggatinggatinggating. Nature, 2009; 
462 (7276): 1039 

Dec. 24, 2009. Working 
transistor made of  
a single molecule. 

Placement and orientation of individual DNA Placement and orientation of individual DNA Placement and orientation of individual DNA Placement and orientation of individual DNA 
shapes on lithographically patterned surfaces. shapes on lithographically patterned surfaces. shapes on lithographically patterned surfaces. shapes on lithographically patterned surfaces. 
Nature Nanotechnology 4, 557 - 561 (2009). 

<10 iterations of Moore’s Law left! 
The race is on for molecular scale 
integrated circuits. 

              50 years later50 years later50 years later50 years later    
 

Jan. 2010. Intel and Micron 
announce 25nm NAND flash. 



Building The Smallest Things 

• How do we build structures that are by 
definition smaller than your tools?  

 

• Basic answer: you can’t. Structures (and 
tools) should build themselves!  
 

• By programmed self-assembly. 



Molecular IKEA 

• Nature can self-assemble.  
Can we? 
 

• “Dear IKEA, please send me a 
chest of drawers that assembles 
itself.” 

 

• We need a magical material where 
the pieces are pre-programmed 
to fit into to each other. 
 

• At the molecular scale many such 
materials exist; let’s pick one… 

 

Add water 



Sequence of Base Pairs (GACT alphabet) 

DNA 

Interactive DNA Tutorial 
(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html) 

GC Base Pair 
Guanine-Cytosine 

TA Base Pair 
Thymine-Adenine 



Robust, and Long 
• DNA in each human cell: 

o 3 billion base pairs 

o 2 meters long, 2nm thick 

o folded into a 6µm ball 

o 750 MegaBytes 

 

• A huge amount for a cell 
o Every time a cell replicates it has to 

copy 2 meters of DNA reliably. 

o To get a feeling for the  
scale disparity, compute: 
 

• DNA in human body 
o 10 trillion cells 

o 133 Astronomical Units long 

o 7.5 OctaBytes 
 

• DNA in human population 
o 20 million light years long 

 

 

Andromeda Galaxy 
2.5 million light years 

DNA wrapping into chromosomes 



Zipping Along 

DNA replication in real time 
 

In Humans: 50 nucleotides/second 
Whole genome in a few hours (with parallel processing) 

 

In Bacteria: 1000 nucleotides/second  
(higher error rate) 

DNA transcription in real time 
 

RNA polymerase II: 15-30 base/second 

Drew Berry 
http://www.wehi.edu.au/wehi-tv 

• DNA can support structural and computational complexity. 



Nanoscale Engineering 

• Sensing 
o Reacting to forces 

o Binding to molecules 

• Actuating 
o Releasing molecules 

o Producing forces 

• Constructing 
o Chassis 

o Growth 

• Computing 
o Signal Processing 

o Decision Making 

Sensing 

Constructing Actuating 

Computing 

Nucleic Acids can do all this. 

And interface to biology. 



Hybridization 

Bernard Yurke 

• Strands with opposite orientation and complementary 
base pairs stick to each other (Watson-Crick duality). 

• This is all we are going to use 
o We are not going to exploit DNA replication, transcription, translation,  

restriction and ligation enzymes, etc., which enable other classes of tricks. 



Hybridization Tricks 

Sensing 

Constructing Actuating 

Computing 



Constructing 

Sensing 

Constructing Actuating 

Computing 



Crosslinking 



Crosslinking 



Crosslinking 



Crosslinking 



Crosslinking 
In nature, crosslinking is deadly 
(blocks DNA replication). 

In engineering, crosslinking  
is the key to using DNA as  
a construction material. 



DNA Tiling 

crosslinking 

4 sticky ends 



2D DNA Lattices 

 

Chengde Mao 

Purdue University, USA N-point Stars 



3D DNA Structures 

AndrewTuberfield 
Oxford 

Ned Seeman 
NYU 

3D Cyrstal 

Tetrahedron 



CADnano 

 

S.M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf and W. M. Shih  
Self-assembly of DNA into nanoscale three-dimensional shapes, Nature (2009) 

William Shih 
Harvard 



• Folding long (7000bp) naturally occurring (viral) ssDNA 

• By lots of short ‘staple’ strands that constrain it 

DNA Origami 

PWK Rothemund, Nature 440, 297 (2006)  

Black: long viral strand 

Color: short staple strands 



DNA Origami 

 

Paul W K Rothemund  
California Institute of Technology 

Paul Rothemund’s “Disc with three holes” (2006) 

This means we can already self-
assemble meso-scale structures. 



DNA Circuit Boards 

 

"What we are really making 
are tiny DNA circuit boards 

that will be used to 
assemble other 
components."  

Greg Wallraff, IBM 

European Nanoelectronics Initiative Advisory Council 

PWK Rothemund, Nature 440, 297 (2006)  

+ 

6 nm grid of 
individually 
addressable 
pixels 

DNA-wrapped 
nanotubes 



Sensing 

Sensing 

Constructing Actuating 

Computing 



Aptamers 

• Artificially eveloved DNA molecules that stick to 
anything you like (highly selectively). 



Pathogen Spotlights 

• DNA aptamer binds to: 
o A) a pathogen 

o B) a molecule our immune system 
already hates and immediately 
removes (eats) along with anything 
attached to it 

 

 

 

Kary Mullis (incidentally, also 
Nobel prize for inventing the 
Polymerase Chain Reaction) 

 

• Result: instant immunity 
o Mice poisoned with Anthrax plus 

aptamer (100% survival) 

o Mice poinsoned with Anthrax  
(not so good) 

 

 



Computing 

Basic Steps 

Sensing 

Constructing Actuating 

Computing 



Compositionality 

• Sensors and Actuators at the 'edge' of the system 
o They can use disparate kinds of inputs (sensors) and outputs (actuators) 

 

• The 'kernel' of the system computes 
o Must use uniform inputs and outputs 

 

• Compositionality in the kernel 
o Supporting 'arbitrary' computing complexity 

o The output of each computing components  
must be the same kind of 'signal' as the input 

•  sdf 

o If the inputs are voltages, the outputs must be voltages 

o If the inputs are DNA, the outputs must be DNA 

 

• Central design question 
o What should our signals (not components!) be? 

o Then design components that manipulate those signals. 



Rules of the Game 

• Short complementary segments hybridize reversibly 

 

 

 

 

• Long complementary segments hybridize irreversibly 



Input 

Gate 

DNA Strand Displacement 

• Short strand (toehold): reversible binding 

• Long strand (body): irreversible binding 

Random 
collision/ 
breakup 

Random 
walk 

Entropy 
gain 

Output 



Failed Strand Displacement 

• What if the input does not match the gate? 



Failed Strand Displacement 

 



Failed Strand Displacement 

 



????    

Failed Strand Displacement 

 



Failed Strand Displacement 

 



Failed Strand Displacement 

 



Failed Strand Displacement 

• Hence an incorrect binding will undo 
o That’s why toeholds must bind reversibly 

 

 

 

 

 

 

• Matching depends on the long segment only 
o Strand displacement succeeds iff the whole long segment matches 

o The address space is determined by the size of the long segment,  
which is unbounded (not by the size of the toehold) 

o The toehold is just a ‘cache’ of the address 

 



Computing 

Implementing “Arbitrary” 
Computing Functions 

Sensing 

Constructing Actuating 

Computing 



What does DNA Compute? 

• Electronics has electrons 
o All electrons are the same: you can only count them 

o Few electrons = False; lots  of electrons = True 

o But Boolean Logic is only a necessary evil to build symbolic computation 

 

• DNA computing has symbols (DNA words) 
o DNA words are not all the same 

o Symbolic computation on abstract signals can be done directly 

o Signals are presented concurrently (in a soup) 

o No requirement to do Boolean Logic 

 

• Then, what are our ‘gates’ (if not Boolean?) 
o Theory of Concurrency 

o Process Algebra as the “Boolean Algebra” of DNA Computing 

 



Signals 

• A signal is the representation of an abstract event 
o E.g. generated by a sensor 

o E.g. accepted by an effector 

o We are not limited to true/false 

 

• 3-domain signals 
o xh: hystory (ignore)  

o xt: toehold (binding) 

o xb: body (recognition) 

 

 

• Signals (single stranded DNA) are prepared  
by (artificial) DNA synthesis 

 

 



Gates 

• Double-stranded structures with free toeholds 

 

 

 

 

 

 

• Gates are prepared by self-assembly from single-
stranded DNA that is synthesized 

 



Fork Gate 

•  x → y + z 

 

 

 

 

 

•  x → y + 0  transform x to y (transducer) 

•  x → x + y  linear production of y (catalyst) 

•  x → x + x  exponential production of x (amplifier) 



This is the 
Fork Gate 
structure 

Fork Gate 



Fork Gate 



 

Fork Gate 



Fork Gate 

 



Fork Gate 

 



Fork Gate 

 



Fork Gate 

 



Fork Gate 

 



Fork Gate 

 



Fork Gate 

 



Fork Gate 



This is 
Waste 

Fork Gate 



Join Gate 

•  x + y → z 

 

 

 

 

 



This is the 
Join Gate 
structure 

Join Gate 



Join Gate 



Join Gate 



Join Gate 



Join Gate 



Join Gate 



Join Gate 



Join Gate 



Join Gate 



Join Gate 



Join Gate 



Join Gate 



Join Gate 



Join Gate 



Join Gate 



Join Gate 

This is 
Waste 



General n-Join/m-Fork Gate 

Garbage  
collection 



Strand Algebra 

 

 

• Join + Fork + Populations = (Stochastic) Petri Nets 

x1 x2 

y2 y3 y1 

JoinJoinJoinJoin    

ForkForkForkFork    

x1 | .. | xn | [x1,..,xn].[y1,..,ym] → y1 | .. | ym 



Gate Design Verification 

• Active garbage 
o The active join residuals slow down the performance of following joins.  

o � Add a garbage collector to remove the active residuals. 

 

• Interference between gates 
o The join garbage collector interferes with the fork gate. 

o � Modify the fork gate to remove the interference. 

 

• What else could go wrong? 
o Endless possibilities. 

o � Prove that the fork/join gate structures correctly implement  
fork/join in all larger circuits. 



Actuating 

Sensing 

Constructing Actuating 

Computing 



Hybridization Chain Reaction 



Polymerization Motor 

Rickettsia (spotted fever) 



Curing 

Sensing 

Constructing Actuating 

Computing 



A Doctor in Each Cell 



Tools 



Sequence Design 

Input 

Output 

So we can in principle work at this level. 



Visual DSD 
A Strand Displacement Simulator 

Matthew Lakin, Simon Youssef, Andrew Phillips 

http://lepton.research.microsoft.com/webdna/ 



Syntax 



Dynamics 



Initial Species 

 



Reaction Graph 



Simulation 



Abstract Reactions 



Detailed Reactions 



Detailed Leak Reactions! 



Just-in-Time Simulation 



DNA Sequences 



Final DNA Circuit 

Place 

Order 



Next-Day Oligos! 

 



Place Order NOW! 

 



DNA by Mail 

 



It runs! 

• (Nothing to do with us.) 



DNA Compilation 



Compilers 

Language 
Implementation #1 

Language 
Implementation #2 

Language 
Implementation #3 

Language 
Design #1 

Language 
Design #2 

Language 
Design #3 

Petri 
Nets 

Boolean 
Networks 

… 

Monolithic 
Compilers 



Intermediate Languages 

Strand 
Algebra 

The algebra of fork 
and join gates 

Petri 
Nets 

Boolean 
Networks 

Intermediate 
Language 

Front End 

Back End 



Front Ends 

Petri 
Nets 

Strand 
Algebra 

Intermediate 
Language #2 

Intermediate 
Language 

Circuit 
Design 

… 

Boolean 
Networks 



Back Ends 

3-domain 
Signals 

2-domain 
Signals 

4-domain 
Signals 

Strand 
Algebra 

Gate 
Design 

Device 
Design 

Intermediate 
Language 

Structural 
Language 



Compiling Abstract 
Machines 



Boolean Networks 

This encoding is compositional, and can encode any Boolean network: 
- multi-stage networks can be assembled (combinatorial logic) 
- network loops are allowed (sequential logic) 

Boolean Networks to Strand Algebra 



Petri Nets 

Transitions as Gates 
Place markings as Signals  

Petri Nets to Strand Algebra 



Chemical Reaction Networks 

Implementing an arbitrary finite chemical system in 
DNA with asymptotically correct kinetics 

Soloveichick & al. DNA 15 
 

Species become signals 
Reactions become gates 

 
A + B → C + D  ⇒  [A,B].[C,D] 



Interacting Automata 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

900xA, 500xB, 
100xC 

(((([A,B].[B,B][A,B].[B,B][A,B].[B,B][A,B].[B,B])* |)* |)* |)* |    
([B,C].[C,C])* |([B,C].[C,C])* |([B,C].[C,C])* |([B,C].[C,C])* |    
([C,A].[A,A])* |([C,A].[A,A])* |([C,A].[A,A])* |([C,A].[A,A])* |    
A | A | B | CA | A | B | CA | A | B | CA | A | B | C    
    
    
    This is a uniform population of identical automata,  

but heterogeneous populations of interacting automata can be similarly handled.  



Interacting Automata 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

900xA, 500xB, 
100xC 

([A,B].[B,B])* |([A,B].[B,B])* |([A,B].[B,B])* |([A,B].[B,B])* |    
(((([B,C].[C,C][B,C].[C,C][B,C].[C,C][B,C].[C,C])* |)* |)* |)* |    
([C,A].[A,A])* |([C,A].[A,A])* |([C,A].[A,A])* |([C,A].[A,A])* |    
A | B | B | CA | B | B | CA | B | B | CA | B | B | C    
    
    
    This is a uniform population of identical automata,  

but heterogeneous populations of interacting automata can be similarly handled.  



Interacting Automata 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

900xA, 500xB, 
100xC 

([A,B].[B,B])* |([A,B].[B,B])* |([A,B].[B,B])* |([A,B].[B,B])* |    
([B,C].[C,C])* |([B,C].[C,C])* |([B,C].[C,C])* |([B,C].[C,C])* |    
(((([C,A].[A,A][C,A].[A,A][C,A].[A,A][C,A].[A,A])* |)* |)* |)* |    
A | B | C | CA | B | C | CA | B | C | CA | B | C | C    
    
    
    This is a uniform population of identical automata,  

but heterogeneous populations of interacting automata can be similarly handled.  



Interacting Automata 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

900xA, 500xB, 
100xC 

([A,B].[B,B])* |([A,B].[B,B])* |([A,B].[B,B])* |([A,B].[B,B])* |    
([B,C].[C,C])* |([B,C].[C,C])* |([B,C].[C,C])* |([B,C].[C,C])* |    
([C,A].[A,A])* |([C,A].[A,A])* |([C,A].[A,A])* |([C,A].[A,A])* |    
AAAA    | | | | AAAA    | | | | BBBB    | | | | CCCC    
    
    
    This is a uniform population of identical automata,  

but heterogeneous populations of interacting automata can be similarly handled.  



Strand Algebra to DSD 

• compile(x) =  

 

• compile([x1,..,xn].[y1,..,ym]) = 

 

 

• compile(0) =   empty solution 

 

• compile(P | P’) =  mix(compile(P), compile(P’)) 

 

• compile(P*) =  population(compile(P)) 

P   ::=   x  ⋮  [x1,..,xn].[y1,..,ym]  ⋮  0  ⋮  P|P  ⋮  P*          n≥1, m≥0 



And finally... 



Summary 

• Abstract Machines to Strand Algebra 
o Or other intermediate language 

• Strand Algebra to DSD 
o Or other structural language 

• Simulation, analysis, etc. 
o Iterate a lot 

• DSD to Sequences 
o E.g. NuPack, or pre-build strand libraries 

• Sequences to DNA 
o Web order 

• DNA experiments 
o Fairly basic wet lab 

• Deployable Nanotech 



Conclusions 

• Nucleic Acids 
o Programmable matter 

 

• DNA Strand Displacement 
o A computational mechanism at the molecular level 

 

• DNA as a Compilation Target for Abstract Machines 
o Abstract Machines (Boolean Networks, Petri Nets, Interacting Automata) 

o Intermediate languages (Strand Algebra, Strand Displacement Language). 

o DNA sequence generation. 

 

• Tools 
o Thermodynamic analysis. 

o Reaction graph generation. 

o Simulation. 

o Verification (not yet). 
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