
Luca Cardelli
Microsoft Research

Torino, 2010-03-24

http://lucacardelli.name

Algebras and Languages for

Molecular Programming

Smaller and Smaller

Dec. 23, 1947. John Bardeen
and Walter Brattain show the
first working transistor.

Sep. 1958. Jack Kilby builds
the first integrated circuit.

Observation Observation Observation Observation of of of of
molecular orbital molecular orbital molecular orbital molecular orbital

gatinggatinggatinggating. Nature, 2009;
462 (7276): 1039

Dec. 24, 2009. Working
transistor made of
a single molecule.

Placement and orientation of individual DNA Placement and orientation of individual DNA Placement and orientation of individual DNA Placement and orientation of individual DNA
shapes on lithographically patterned surfaces. shapes on lithographically patterned surfaces. shapes on lithographically patterned surfaces. shapes on lithographically patterned surfaces.
Nature Nanotechnology 4, 557 - 561 (2009).

<10 iterations of Moore’s Law left!
The race is on for molecular scale
integrated circuits.

 50 years later50 years later50 years later50 years later

Jan. 2010. Intel and Micron
announce 25nm NAND flash.

Building The Smallest Things

• How do we build structures that are by
definition smaller than your tools?

• Basic answer: you can’t. Structures (and
tools) should build themselves!

• By programmed self-assembly.

Molecular IKEA

• Nature can self-assemble.
Can we?

• “Dear IKEA, please send me a
chest of drawers that assembles
itself.”

• We need a magical material where
the pieces are pre-programmed
to fit into to each other.

• At the molecular scale many such
materials exist; let’s pick one…

Add water

Sequence of Base Pairs (GACT alphabet)

DNA

Interactive DNA Tutorial
(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)

GC Base Pair
Guanine-Cytosine

TA Base Pair
Thymine-Adenine

Robust, and Long
• DNA in each human cell:

o 3 billion base pairs

o 2 meters long, 2nm thick

o folded into a 6µm ball

o 750 MegaBytes

• A huge amount for a cell
o Every time a cell replicates it has to

copy 2 meters of DNA reliably.

o To get a feeling for the
scale disparity, compute:

• DNA in human body
o 10 trillion cells

o 133 Astronomical Units long

o 7.5 OctaBytes

• DNA in human population
o 20 million light years long

Andromeda Galaxy
2.5 million light years

DNA wrapping into chromosomes

Zipping Along

DNA replication in real time

In Humans: 50 nucleotides/second
Whole genome in a few hours (with parallel processing)

In Bacteria: 1000 nucleotides/second
(higher error rate)

DNA transcription in real time

RNA polymerase II: 15-30 base/second

Drew Berry
http://www.wehi.edu.au/wehi-tv

• DNA can support structural and computational complexity.

Nanoscale Engineering

• Sensing
o Reacting to forces

o Binding to molecules

• Actuating
o Releasing molecules

o Producing forces

• Constructing
o Chassis

o Growth

• Computing
o Signal Processing

o Decision Making

Sensing

Constructing Actuating

Computing

Nucleic Acids can do all this.

And interface to biology.

Hybridization

Bernard Yurke

• Strands with opposite orientation and complementary
base pairs stick to each other (Watson-Crick duality).

• This is all we are going to use
o We are not going to exploit DNA replication, transcription, translation,

restriction and ligation enzymes, etc., which enable other classes of tricks.

Hybridization Tricks

Sensing

Constructing Actuating

Computing

Constructing

Sensing

Constructing Actuating

Computing

Crosslinking

Crosslinking

Crosslinking

Crosslinking

Crosslinking
In nature, crosslinking is deadly
(blocks DNA replication).

In engineering, crosslinking
is the key to using DNA as
a construction material.

DNA Tiling

crosslinking

4 sticky ends

2D DNA Lattices

Chengde Mao

Purdue University, USA N-point Stars

3D DNA Structures

AndrewTuberfield
Oxford

Ned Seeman
NYU

3D Cyrstal

Tetrahedron

CADnano

S.M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf and W. M. Shih
Self-assembly of DNA into nanoscale three-dimensional shapes, Nature (2009)

William Shih
Harvard

• Folding long (7000bp) naturally occurring (viral) ssDNA

• By lots of short ‘staple’ strands that constrain it

DNA Origami

PWK Rothemund, Nature 440, 297 (2006)

Black: long viral strand

Color: short staple strands

DNA Origami

Paul W K Rothemund
California Institute of Technology

Paul Rothemund’s “Disc with three holes” (2006)

This means we can already self-
assemble meso-scale structures.

DNA Circuit Boards

"What we are really making
are tiny DNA circuit boards

that will be used to
assemble other
components."

Greg Wallraff, IBM

European Nanoelectronics Initiative Advisory Council

PWK Rothemund, Nature 440, 297 (2006)

+

6 nm grid of
individually
addressable
pixels

DNA-wrapped
nanotubes

Sensing

Sensing

Constructing Actuating

Computing

Aptamers

• Artificially eveloved DNA molecules that stick to
anything you like (highly selectively).

Pathogen Spotlights

• DNA aptamer binds to:
o A) a pathogen

o B) a molecule our immune system
already hates and immediately
removes (eats) along with anything
attached to it

Kary Mullis (incidentally, also
Nobel prize for inventing the
Polymerase Chain Reaction)

• Result: instant immunity
o Mice poisoned with Anthrax plus

aptamer (100% survival)

o Mice poinsoned with Anthrax
(not so good)

Computing

Basic Steps

Sensing

Constructing Actuating

Computing

Compositionality

• Sensors and Actuators at the 'edge' of the system
o They can use disparate kinds of inputs (sensors) and outputs (actuators)

• The 'kernel' of the system computes
o Must use uniform inputs and outputs

• Compositionality in the kernel
o Supporting 'arbitrary' computing complexity

o The output of each computing components
must be the same kind of 'signal' as the input

• sdf

o If the inputs are voltages, the outputs must be voltages

o If the inputs are DNA, the outputs must be DNA

• Central design question
o What should our signals (not components!) be?

o Then design components that manipulate those signals.

Rules of the Game

• Short complementary segments hybridize reversibly

• Long complementary segments hybridize irreversibly

Input

Gate

DNA Strand Displacement

• Short strand (toehold): reversible binding

• Long strand (body): irreversible binding

Random
collision/
breakup

Random
walk

Entropy
gain

Output

Failed Strand Displacement

• What if the input does not match the gate?

Failed Strand Displacement

Failed Strand Displacement

????

Failed Strand Displacement

Failed Strand Displacement

Failed Strand Displacement

Failed Strand Displacement

• Hence an incorrect binding will undo
o That’s why toeholds must bind reversibly

• Matching depends on the long segment only
o Strand displacement succeeds iff the whole long segment matches

o The address space is determined by the size of the long segment,
which is unbounded (not by the size of the toehold)

o The toehold is just a ‘cache’ of the address

Computing

Implementing “Arbitrary”
Computing Functions

Sensing

Constructing Actuating

Computing

What does DNA Compute?

• Electronics has electrons
o All electrons are the same: you can only count them

o Few electrons = False; lots of electrons = True

o But Boolean Logic is only a necessary evil to build symbolic computation

• DNA computing has symbols (DNA words)
o DNA words are not all the same

o Symbolic computation on abstract signals can be done directly

o Signals are presented concurrently (in a soup)

o No requirement to do Boolean Logic

• Then, what are our ‘gates’ (if not Boolean?)
o Theory of Concurrency

o Process Algebra as the “Boolean Algebra” of DNA Computing

Signals

• A signal is the representation of an abstract event
o E.g. generated by a sensor

o E.g. accepted by an effector

o We are not limited to true/false

• 3-domain signals
o xh: hystory (ignore)

o xt: toehold (binding)

o xb: body (recognition)

• Signals (single stranded DNA) are prepared
by (artificial) DNA synthesis

Gates

• Double-stranded structures with free toeholds

• Gates are prepared by self-assembly from single-
stranded DNA that is synthesized

Fork Gate

• x → y + z

• x → y + 0 transform x to y (transducer)

• x → x + y linear production of y (catalyst)

• x → x + x exponential production of x (amplifier)

This is the
Fork Gate
structure

Fork Gate

Fork Gate

Fork Gate

Fork Gate

Fork Gate

Fork Gate

Fork Gate

Fork Gate

Fork Gate

Fork Gate

Fork Gate

This is
Waste

Fork Gate

Join Gate

• x + y → z

This is the
Join Gate
structure

Join Gate

Join Gate

Join Gate

Join Gate

Join Gate

Join Gate

Join Gate

Join Gate

Join Gate

Join Gate

Join Gate

Join Gate

Join Gate

Join Gate

Join Gate

Join Gate

This is
Waste

General n-Join/m-Fork Gate

Garbage
collection

Strand Algebra

• Join + Fork + Populations = (Stochastic) Petri Nets

x1 x2

y2 y3 y1

JoinJoinJoinJoin

ForkForkForkFork

x1 | .. | xn | [x1,..,xn].[y1,..,ym] → y1 | .. | ym

Gate Design Verification

• Active garbage
o The active join residuals slow down the performance of following joins.

o � Add a garbage collector to remove the active residuals.

• Interference between gates
o The join garbage collector interferes with the fork gate.

o � Modify the fork gate to remove the interference.

• What else could go wrong?
o Endless possibilities.

o � Prove that the fork/join gate structures correctly implement
fork/join in all larger circuits.

Actuating

Sensing

Constructing Actuating

Computing

Hybridization Chain Reaction

Polymerization Motor

Rickettsia (spotted fever)

Curing

Sensing

Constructing Actuating

Computing

A Doctor in Each Cell

Tools

Sequence Design

Input

Output

So we can in principle work at this level.

Visual DSD
A Strand Displacement Simulator

Matthew Lakin, Simon Youssef, Andrew Phillips

http://lepton.research.microsoft.com/webdna/

Syntax

Dynamics

Initial Species

Reaction Graph

Simulation

Abstract Reactions

Detailed Reactions

Detailed Leak Reactions!

Just-in-Time Simulation

DNA Sequences

Final DNA Circuit

Place

Order

Next-Day Oligos!

Place Order NOW!

DNA by Mail

It runs!

• (Nothing to do with us.)

DNA Compilation

Compilers

Language
Implementation #1

Language
Implementation #2

Language
Implementation #3

Language
Design #1

Language
Design #2

Language
Design #3

Petri
Nets

Boolean
Networks

…

Monolithic
Compilers

Intermediate Languages

Strand
Algebra

The algebra of fork
and join gates

Petri
Nets

Boolean
Networks

Intermediate
Language

Front End

Back End

Front Ends

Petri
Nets

Strand
Algebra

Intermediate
Language #2

Intermediate
Language

Circuit
Design

…

Boolean
Networks

Back Ends

3-domain
Signals

2-domain
Signals

4-domain
Signals

Strand
Algebra

Gate
Design

Device
Design

Intermediate
Language

Structural
Language

Compiling Abstract
Machines

Boolean Networks

This encoding is compositional, and can encode any Boolean network:
- multi-stage networks can be assembled (combinatorial logic)
- network loops are allowed (sequential logic)

Boolean Networks to Strand Algebra

Petri Nets

Transitions as Gates
Place markings as Signals

Petri Nets to Strand Algebra

Chemical Reaction Networks

Implementing an arbitrary finite chemical system in
DNA with asymptotically correct kinetics

Soloveichick & al. DNA 15

Species become signals
Reactions become gates

A + B → C + D ⇒ [A,B].[C,D]

Interacting Automata

A B

!a

?c
?a

!b ?b

C

!c

A B

!a

?c
?a

!b ?b

C

!c

A B

!a

?c
?a

!b ?b

C

!c

A B

!a

?c
?a

!b ?b

C

!c

900xA, 500xB,
100xC

(((([A,B].[B,B][A,B].[B,B][A,B].[B,B][A,B].[B,B])* |)* |)* |)* |
([B,C].[C,C])* |([B,C].[C,C])* |([B,C].[C,C])* |([B,C].[C,C])* |
([C,A].[A,A])* |([C,A].[A,A])* |([C,A].[A,A])* |([C,A].[A,A])* |
A | A | B | CA | A | B | CA | A | B | CA | A | B | C

 This is a uniform population of identical automata,

but heterogeneous populations of interacting automata can be similarly handled.

Interacting Automata

A B

!a

?c
?a

!b ?b

C

!c

A B

!a

?c
?a

!b ?b

C

!c

A B

!a

?c
?a

!b ?b

C

!c

A B

!a

?c
?a

!b ?b

C

!c

900xA, 500xB,
100xC

([A,B].[B,B])* |([A,B].[B,B])* |([A,B].[B,B])* |([A,B].[B,B])* |
(((([B,C].[C,C][B,C].[C,C][B,C].[C,C][B,C].[C,C])* |)* |)* |)* |
([C,A].[A,A])* |([C,A].[A,A])* |([C,A].[A,A])* |([C,A].[A,A])* |
A | B | B | CA | B | B | CA | B | B | CA | B | B | C

 This is a uniform population of identical automata,

but heterogeneous populations of interacting automata can be similarly handled.

Interacting Automata

A B

!a

?c
?a

!b ?b

C

!c

A B

!a

?c
?a

!b ?b

C

!c

A B

!a

?c
?a

!b ?b

C

!c

A B

!a

?c
?a

!b ?b

C

!c

900xA, 500xB,
100xC

([A,B].[B,B])* |([A,B].[B,B])* |([A,B].[B,B])* |([A,B].[B,B])* |
([B,C].[C,C])* |([B,C].[C,C])* |([B,C].[C,C])* |([B,C].[C,C])* |
(((([C,A].[A,A][C,A].[A,A][C,A].[A,A][C,A].[A,A])* |)* |)* |)* |
A | B | C | CA | B | C | CA | B | C | CA | B | C | C

 This is a uniform population of identical automata,

but heterogeneous populations of interacting automata can be similarly handled.

Interacting Automata

A B

!a

?c
?a

!b ?b

C

!c

A B

!a

?c
?a

!b ?b

C

!c

A B

!a

?c
?a

!b ?b

C

!c

A B

!a

?c
?a

!b ?b

C

!c

900xA, 500xB,
100xC

([A,B].[B,B])* |([A,B].[B,B])* |([A,B].[B,B])* |([A,B].[B,B])* |
([B,C].[C,C])* |([B,C].[C,C])* |([B,C].[C,C])* |([B,C].[C,C])* |
([C,A].[A,A])* |([C,A].[A,A])* |([C,A].[A,A])* |([C,A].[A,A])* |
AAAA | | | | AAAA | | | | BBBB | | | | CCCC

 This is a uniform population of identical automata,

but heterogeneous populations of interacting automata can be similarly handled.

Strand Algebra to DSD

• compile(x) =

• compile([x1,..,xn].[y1,..,ym]) =

• compile(0) = empty solution

• compile(P | P’) = mix(compile(P), compile(P’))

• compile(P*) = population(compile(P))

P ::= x ⋮ [x1,..,xn].[y1,..,ym] ⋮ 0 ⋮ P|P ⋮ P* n≥1, m≥0

And finally...

Summary

• Abstract Machines to Strand Algebra
o Or other intermediate language

• Strand Algebra to DSD
o Or other structural language

• Simulation, analysis, etc.
o Iterate a lot

• DSD to Sequences
o E.g. NuPack, or pre-build strand libraries

• Sequences to DNA
o Web order

• DNA experiments
o Fairly basic wet lab

• Deployable Nanotech

Conclusions

• Nucleic Acids
o Programmable matter

• DNA Strand Displacement
o A computational mechanism at the molecular level

• DNA as a Compilation Target for Abstract Machines
o Abstract Machines (Boolean Networks, Petri Nets, Interacting Automata)

o Intermediate languages (Strand Algebra, Strand Displacement Language).

o DNA sequence generation.

• Tools
o Thermodynamic analysis.

o Reaction graph generation.

o Simulation.

o Verification (not yet).

Acknowledgments

• Illustrations
o John Reif, Duke

o Ned Seeman, NYU

o Erik Winfree, Caltech

o Bernard Yurke, Boise State

o Wikipedia

o YouTube

• David Soloveichik

